
Final Project Report
RBE3001 Team 5

Nathan Rosenberg
Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetts

narosenberg@wpi.edu

Alexandra Wheeler
Robotics Engineering/Computer Science

Worcester Polytechnic Institute
Worcester, Massachusetts

awheeler2@wpi.edu

Walter Gallati
Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetts

wggallati@wpi.edu

Abstract—In a modern industrial setting, an automated sorting
systems ability to pick up a variety of objects and sort them by
their weight could prove to be immensely important. This project
aimed to use a thee degrees-of-freedom (DOF) robotics arm to
sort objects by weight and color. The goal of this project is to
complete the objective of sorting objects in the workspace. The
overall program includes PID, force detection, camera vision,
trajectory generation, forward and inverse position kinematics
and forward and inverse velocity kinematics.

Index Terms—Robot arm, kinematics, design, RBE3001, Mat-
lab, Robotics

I. INTRODUCTION

The system consists of a 3DOF robotic arm. Each link
has AS5055A Magnetic Joint Angle Encoder and a TAL220
Parallel Beam Load Cell to allow for closed loop control. To
control the arm it has a Nucleo-F746ZG Dev Board. The arm
communicates over SPI to the application Matlab to receive
commands and send packets. The arm also has a gripper at the
tip of the end effector to manipulate objects in its workspace.
To determine what is in the workspace there is a webcam that
can send live images to Matlab. The arm is shown in figure
1.

Fig. 1. Final Version of the Arm.

The arms end task is to sort a series of objects. The objects
are to be sorted by color (yellow, blue or green) and weight
(light or heavy). The arm is to determine the position of an
object, determine it’s category, pick it up and move it to its
designated spot. Afterwards, the arm will repeat until there is
no more objects on the board.

II. METHODOLOGY

A. Implement Force Sensing

The goal of this step is to get the torque sensors working and
communicating properly with the Matlab code. The first step
is configure the Nucelo communication to include joint torque
sensor data in the status command. This will have the ADC
read the three corresponding input channels corresponding to
the pre-amplified load cell signals. This data is then averaged
to smooth the force readings. Afterwards the sensors are
calibrated and include an offset value that is mainly the weight
of the arm and interferences from the sensor. A scale is
included to convert the adc readings to engineering units.

Force is then calculated from the torque readings using the
transposed Jacobian as shown in equation one. These forces
are then put onto a live 3D plot of the arm, with vectors that are
scaled proportionality to the magnitude of the applied force.

FTip = (jacobianT )−1 ∗

 torque1
torque2
torque3

 (1)

B. Object Manipulation and Identification

The gripper then needs to be configured. The gripper needs
to be mounted onto the end of the end-effector of the arm.
The gripper is connected to 6v off the power supply and a has
a common ground with the Nucleo board. The code is then
configured to be able to open and close the gripper. The arm
is then programed to close the gripper on the heavy object
and sent to go to several positions recording the joint torques
and force vectors. The camera is then modified to detect the
centroids of up to three different colors.

C. Sorting System

This part of the lab included getting the arm to sort the
objects.The arm has to pick up an object determine the
color and weight then sort the object. Overall the arm needs
to have a smooth trajectory as it moves about. During the
demonstrations, only one of each color can be placed on the
sorting area at the same time. So there is only ever one color
of each object in the workspace, the camera vision will not
need to detect multiple of the same color.

The arm starts with having the gripper open in blank
position. The arm can start at any angle but cannot block



the view of the camera. The first step of the program is
the camera. The camera will use three color HSV masks to
determine the positions of the objects. It will obtain the one
closest to the tip of the end-effector and remember the color
of the object. Afterwards the object position is passed to the
trajectory generation. This will use the trajectory generation
function to get the end-effector to move to the object position.
Once the arm is in position it will close the gripper.

Fig. 2. Diagram of Sorting Methodology.

Once the object has been picked up it will lift the arm
to weigh the object. Once the weight is determined it will
move the arm to a predetermined location for the objects
classification. When the arm has reached its position it will
open the gripper to release the object into it’s position. The
arm will then rerun the program, finding the object closest to
it.

III. RESULTS

A. Implement Force Sensing

Fig. 3. 3D Plot of Applied Forces on Arm.

The force vector is calculated at the end effector of the
arm. To do this, the Jacobian is transposed, and the inverse

is multiplied by the instantaneous torques.The torques are of
each joint from the strain gauges. Equation one shows how to
perform these calculations.

Fig. 4. Flowchart of Object Detection.

Once the force can be calculated from the arm, it can be
displayed on the previously made 3D plot. By getting the force
calculations in real time the force vectors, of the x, y and z
directions, can be applied and shown. The figure below shows
these vectors at an arbitrary configuration with an arbitrary
amount of force applied. The purple vector is the z direction,
red is x and yellow is y. All of these vectors lengths are
proportional to the amount of force.

B. Object Manipulation

Once the gripper was able to move around the objects, it was
able to pick up the heavy object. The arm was brought to two
configurations. The first was Link 1 at home, Link 2 vertical,
and Link 3 horizontal, essentially the arm is mostly vertical
with the last link at a right angle. The second configuration is
Link1 at home, Link 2 horizontal, and Link 3 horizontal, with
the arm being straight out. The strain gauge values and forces
were collected at both configurations as shown in the tables
below. The values are somewhat inaccurate due to variation
the force sensors have either due to condition of the wires or
jerky motion.

The arm was then set to move through several points
recording position, force and magnitude of force. The arm
moved through arbitrary points to obtain these calculations.



TABLE I
GAUGE VALUES AT TWO CONFIGURATIONS

Configuration One Configuration Two
Link 1 -43.3781 -43.2511
Link 2 5.3549 1.1571
Link 3 5.1595 -0.5402

TABLE II
FORCE VALUES AT TWO CONFIGURATIONS

Configuration One Configuration Two
Link 1 -3.5098 -8.4493
Link 2 -12.0139 -6.8225
Link 3 -1.2205 0.1237

Fig. 5. Plot of Position and Force Vector over Time.

Fig. 6. Image from Camera with Identification of Three Objects.

C. Object Identification

The camera had to be reconfigured from previous labs to
allow for three color masks to identify three separate colors.
The image prints out to a figure on Matlab and overlays the
centroids. It displays a yellow one on blue object, a blue one
on a yellow object, and a red centroid on a green object.The
arm was then moved to weigh the object. The arm was then
moved to hold the heavy weight and light weight, to find out

the force vector for each weight. The arm was moved so link
one was in home position, and the second and third were put
in to approximately forty-five degree angles. Teh valeus were
taken from the second link. This during testing was an easy
to get to position that was close to where objects are picked
up, and a position that gave consistent values. At this position
there would be a variance of about .2, the heavy weight was
measured at 8.4519 and the light weight is 5.1449. These
values every time ended up being stable, with no outliers.

IV. DISCUSSION

A. Implement Force Sensing

Force sensing for each joint was added to the status com-
mand. The nucleo code has a rolling average over ten values
to try and stabilize the values coming from the sensors. A
scale factor is included to get the values to a normal range.
The given scale factors had been included but the original
data wasn’t similar so the values were not put into standard
engineering units.

When the raw values after averaging on nucleo were out-
putted in Matlab there was variation in the results. The values
in the nucleo code included offset from the arm standing
straight up and then multiplied by a hundred. The values were
multiplied to put them into manageable units. Then for the
Matlab code, the values were then averaged another 5 times to
allow for consistency. When using the combined force values
of the Jacobian, the values would be inconsistent, often with
changing sign values when parts of the force vector were near
zero. As the arm would approach an extreme on any axis the
values would get get unstable. This was fixed by only using
the second strain gauge to get the force values.

B. Object Manipulation

A new server command is created for the gripper. This will
allow for the gripper to open and close with commands from
Matlab. The nucleo code will read the first value of a stream
of bits, and depending on if it is a one or zero it will open or
close the gripper. The program will start off with the gripper
in the open position. This will allow for the arm to not have to
worry about whether the gripper is open or not when the arm
is moving towards the object. Once the arm is at position it
will close around the object. The arm will then open when the
object is sorted. Then the cycle will repeat since the gripper
will be in the open position.

The gripper doesn’t have issues with picking up objects,
if the motion is too jerky it can drop the heavy objects. To
combat this rubber bands were put around the tip of the gripper
to provide more surface area fro gripping the objects. This
made the arm not drop the heavy objects. Even when there is
jerky motion as the arm is moving down.

The values around the heavy object are consistent with mo-
tions of torque and forces at different configurations. Between
table I and table II, the arm shows the values increase with
as the position of the arm moves out. So in configuration two
which is at a increased x position the arm reads higher values
as there is more weight on the strain gauges. The graph of



the arm values moving through different set points does not
provide anything conclusive. Except that force increases when
the arm is at a higher acceleration. As well as the force z
shows the most variation. This is showing correctly since the
arm should have the most variation in z. The inconsistencies
in the x and y are likely due to the strain gauges. The stain
gauges provides to much variation.

C. Object Identification

To obtain the image, the camera takes a screenshot. Using
the Matlab crop tool, it reduces the image to only view
the active sorting area. This reduces processing time and
mitigates the possibility of false positives from nearby colored
objects. From there, the program utilizes one of the three color
masks. It goes through the blue mask, green mask, and yellow
mask, converting them to black and white images highlighting
possible objects. The color mask was determined using the
Color Threshold application in Matlab, utilizing the HSV color
space. HSV was used due to ease of creating the color mask, it
allowed the team to determine a color mask quickly. This can
be used to modify the program to sort other colors, increasing
versatility.

Taking the black and white images, the built in function
bwareafill() is used to fill in the object in case of issues with
lighting. regionprops() is then used to reduce the number
of observed objects to only objects the general size of the
ball target. After going through the three masks, the program
calculates the centroids of each item in relation to pixels.

From there, the centroids are converted into xyz coordinates
for the arm using the mn2xy() function. Due to issues with
the camera offset and scale values are then added to these
coordinates. These coordinates are then bundled into an array
with the object color and passed to the arm function. The arm
will then determine which of objects is closest to the arm
and select it to be picked up. To improve the loop rate of
the code, the camera is not used until the arm is ready to
sort another object. Should the camera not find anything, it
returns an empty array, does not pass anything to the arm,
and continues searching.

Due to consistency of the force values a threshold value
was put in place to detect weights. The better way to due
this would be to use euclidean distance from a predetermined
weight of heavy and light. This threshold value, placed in the
middle of the weights ended up working everytime.

D. Sorting System

The software is designed around an arm class, camera
functions and a main script. This allows for concise and easy
to read code. Any functions that relate to the arm are in
the arm class, everything from setting the PID, getting the
angles or any of the position and velocity calculations. The
main camera functions has its own script for the conversion
of camera coordinates to arm coordinates, detection of objects
and the three color masks.

The main script is the code includes the sorting methods. It
takes the functions from the arm class and the camera allowing

it to perform the tasks. The code was broken up like this to
allow for the code to be organized and easier to read. This
allows the software to versatile and easily modified without
creating a new script for each new function. This encapsulation
makes it so the main script can use the functions and data from
the arm class without necessarily knowing the actual states and
methods the functions use. So one function may use another
two or three in the arm class, but the main script only needs
to call one function.

The main loop starts with the arm moving to a starting
position. Once the arm is out of the way, the program utilizes
the camera to find the objects. The object is determeind by
getting up to three positions of objects and then finding the
magnitude of the vector between each one and the current
position of the arm. Of the vectors the minimum is calculated
and that is then the object to pick up. Essentially, this is
the object closest to the arm at its current position when the
camera takes it’s snapshot. If two objects end up with the exact
same distance, it will prioritize the blue, then green, and then
finally the yellow object.

Then using trajectory generation to move the gripper to
position. It will go to the XY position above the object then
drop down onto the object. Afterwards, it will pick up the
object, weigh it in it’s configuration. Then depending on its
classification move it to the correct spot as shown in figure 2.
All movement of the arm will be using trajectory generation,
to allow for more precise movement. The overall function is
shown in the flowchart of figure 7. Demonstrating how the
arm moves from one point of the program to the next.

Part of the goal in this program is simplicity and re-
usability. The program should be overall short and easily
versatile allowing for this to change if needed. The program
should be able to work if another color or weight were to be
added without drastic changes to the code. Minimal hardware
changes were added such as the rubber bands and securing the
camera. This allowed for us to focus on the code and make
it easier to add other objects. To add another color to this
program, all it would need would be a color mask function
and some lines in the camera function as well as adding a spot
for the sorting algorithm to place it in. To add another weight
would just need to add another threshold value to compare the
objects too and more spots for the sorter to place the objects
in.

The arm does end up having a few issues. Due to the
cropping of the camera, the arm can detect the green and blue
objects that had been placed down. Depending on how the
object had been placed down, the ball of the object can be
seen in the camera frame. This can cause issues leading to
there being multiple objects of the same color on the field.
The camera code doesn’t know how to deal with this and will
at times think the object is outside the workspace of the objects
due to the identity of two objects. This is fixed by checking
if the set point of the camera is in the workspace where the
objects should be. If the object is not in the workspace it will
move on to the next object or wait until a sufficient object has
been determined.



Fig. 7. Flowchart of Overall Program.

V. CONCLUSION

Overall the robot performed according to specification. It
was able to pickup and identify yellow, green, and blue objects,
weigh them, and place them in their respective locations. This
was done through a combination of kinematics, dynamics, and
blob detection using a camera. Each object’s position detected
with the camera was translated from X,Y pixel coordinates
to X,Y, Z coordinates in millimeters in relation to the base
of the arm.

This technique, while in theory worked, was flawed in
practice. The lens of the camera was warped and not consistent
across its field of view and such would distort coordinates
of the objects as they moved away from the center of the
image. This would cause the end-effector to go to a position
not consistent with the actual position of the object. This could
be fixed by manually correlating the end-effector position with
the position of the centroid from the camera and using an
inference transform technique to better calculate the actual
position of each object.

Another software architecture improvement would be the
standardization of function inputs when it comes to points and
vectors and their orientation, i.e. column vs. row. Currently we
have this set up for half of our functions and the other half as

individual inputs, i.e. (X,Y, Z) vs (

XY
Z

). Doing this would

help shorten the code and make it easier to work with.

Utilizing other measures for the weight detection could be
put in place make this system easier. Utilizing other force
sensors could help due to the variation. The code could have
also averaged more, but resulting in delays in processing. The
arm could have also used euclidean distances in weighing the
object, but due to simplicity and processing time this was not
put in place.

The arm ended up working well with it being simple. The
use of the arm class made all the functions neat and organized.
The minimal modifications to the hardware allowed for us to
focus on keeping everything simple. Not many big changes
are needed to add in new objects or weights, and this can be
done easily to make this project versatile0 and expandable.

ACKNOWLEDGMENT

We would like to thank the following people for their
help: Professor Gregory Fischer, Kevin Harrington, Nathaniel
Goldfarb, Gunnar Horve and all the SA’s for their support and
guidance throughout this project.


